Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015166

RESUMO

To divide, bacteria must synthesize their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins, including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place. However, their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of Caulobacter FtsW and FzlA, we demonstrate that FzlA is a limiting constriction activation factor that signals to promote conversion of inactive FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.


Assuntos
Caulobacter , Divisão Celular , Parede Celular , Segregação de Cromossomos , Caulobacter/citologia , Morte Celular , Divisão Celular/genética , Proteínas de Bactérias/genética , Peptidoglicano
2.
STAR Protoc ; 5(1): 102766, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38085639

RESUMO

Here, we present a protocol for labeling and tracking individual molecules, particularly cell division proteins in live bacterial cells. The protocol encompasses strain construction, single-molecule imaging, trajectory segmentation, and motion property analysis. The protocol enables the identification of distinctive motion states associated with different cell division proteins. Subsequent assessments of the dynamic behaviors of these proteins provide insights into their activities and interactions at the septum during cell division. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021),1 Lyu et al. (2022),2 and Mahone et al. (2024).3.

3.
Nat Commun ; 13(1): 5751, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180460

RESUMO

FtsN plays an essential role in promoting the inward synthesis of septal peptidoglycan (sPG) by the FtsWI complex during bacterial cell division. How it achieves this role is unclear. Here we use single-molecule tracking to investigate FtsN's dynamics during sPG synthesis in E. coli. We show that septal FtsN molecules move processively at ~9 nm s-1, the same as FtsWI molecules engaged in sPG synthesis (termed sPG-track), but much slower than the ~30 nm s-1 speed of inactive FtsWI molecules coupled to FtsZ's treadmilling dynamics (termed FtsZ-track). Importantly, processive movement of FtsN is exclusively coupled to sPG synthesis and is required to maintain active sPG synthesis by FtsWI. Our findings indicate that FtsN is part of the FtsWI sPG synthesis complex, and that while FtsN is often described as a "trigger" for the initiation for cell wall constriction, it must remain part of the processive FtsWI complex to maintain sPG synthesis activity.


Assuntos
Proteínas de Escherichia coli , Peptidoglicano , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética
4.
Nat Commun ; 12(1): 609, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504807

RESUMO

The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Enzimas/metabolismo , Modelos Biológicos , Peptidoglicano/biossíntese , Imagem Individual de Molécula
5.
Nat Microbiol ; 6(5): 584-593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495624

RESUMO

Synthesis of septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PGTase activity of FtsW has not been demonstrated in vivo. How its activity is spatiotemporally regulated in vivo has also remained elusive. Here, we confirmed FtsW as an essential septum-specific PGTase in vivo using an N-acetylmuramic acid analogue incorporation assay. Next, using single-molecule tracking coupled with genetic manipulations, we identified two populations of processively moving FtsW molecules: a fast-moving population correlated with the treadmilling dynamics of the essential cytoskeletal FtsZ protein and a slow-moving population dependent on active sPG synthesis. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving population. Our results suggest a two-track model, in which inactive sPG synthases follow the 'Z-track' to be distributed along the septum and FtsN promotes their release from the Z-track to become active in sPG synthesis on the slow 'sPG-track'. This model provides a mechanistic framework for the spatiotemporal coordination of sPG synthesis in bacterial cell division.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Membrana/genética , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/metabolismo , Imagem Individual de Molécula
6.
Science ; 355(6326): 744-747, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209899

RESUMO

The bacterial tubulin FtsZ is the central component of the cell division machinery, coordinating an ensemble of proteins involved in septal cell wall synthesis to ensure successful constriction. How cells achieve this coordination is unknown. We found that in Escherichia coli cells, FtsZ exhibits dynamic treadmilling predominantly determined by its guanosine triphosphatase activity. The treadmilling dynamics direct the processive movement of the septal cell wall synthesis machinery but do not limit the rate of septal synthesis. In FtsZ mutants with severely reduced treadmilling, the spatial distribution of septal synthesis and the molecular composition and ultrastructure of the septal cell wall were substantially altered. Thus, FtsZ treadmilling provides a mechanism for achieving uniform septal cell wall synthesis to enable correct polar morphology.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Bactérias/genética , Parede Celular/ultraestrutura , Proteínas do Citoesqueleto/genética , Escherichia coli/genética , Escherichia coli/ultraestrutura , GTP Fosfo-Hidrolases/genética , Hidrólise , Mutação , Peptidoglicano/biossíntese , Tubulina (Proteína)/genética
7.
Biopolymers ; 105(10): 725-34, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27310678

RESUMO

FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/enzimologia , Escherichia coli/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , Complexos Multienzimáticos/genética , Mutação
8.
Nat Struct Mol Biol ; 21(9): 817-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108354

RESUMO

During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.


Assuntos
Anticódon/metabolismo , Códon/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/genética , Conformação Proteica , Transporte de RNA , Alinhamento de Sequência
9.
J Bacteriol ; 196(3): 672-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24272780

RESUMO

The outer membrane proteins (OMPs) of Gram-negative bacterial cells, as well as the mitochondrion and chloroplast organelles, possess unique and highly stable ß-barrel structures. Biogenesis of OMPs in Escherichia coli involves such periplasmic chaperones as SurA and Skp. In this study, we found that the ΔsurA Δskp double-deletion strain of E. coli, although lethal and defective in the biogenesis of OMPs at the normal growth temperature, is viable and effective at the heat shock temperature. We identified FkpA as the multicopy suppressor for the lethal phenotype of the ΔsurA Δskp strain. We also demonstrated that the deletion of fkpA from the ΔsurA cells resulted in only a mild decrease in the levels of folded OMPs at the normal temperature but a severe decrease as well as lethality at the heat shock temperature, whereas the deletion of fkpA from the Δskp cells had no detectable effect on OMP biogenesis at either temperature. These results strongly suggest a functional redundancy between FkpA and SurA for OMP biogenesis under heat shock stress conditions. Mechanistically, we found that FkpA becomes a more efficient chaperone for OMPs under the heat shock condition, with increases in both binding rate and affinity. In light of these observations and earlier reports, we propose a temperature-responsive OMP biogenesis mechanism in which the degrees of functional importance of the three chaperones are such that SurA > Skp > FkpA at the normal temperature but FkpA ≥ SurA > Skp at the heat shock temperature.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Temperatura Alta , Proteínas de Membrana/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Genótipo , Cinética , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/genética
10.
PLoS One ; 7(9): e46068, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049938

RESUMO

The transportation of membrane proteins through the aqueous subcellular space is an important and challenging process. Its molecular mechanism and the associated structural change are poorly understood. Periplasmic chaperones, such as Skp in Escherichia coli, play key roles in the transportation and protection of outer membrane proteins (OMPs) in Gram-negative bacteria. The molecular mechanism through which Skp interacts with and protects OMPs remains mysterious. Here, a combined experimental and molecular dynamics simulation study was performed to gain the structural and dynamical information in the process of OMPs and Skp binding. Stopped-flow experiments on site specific mutated and labeled Skp and several OMPs, namely OmpC, the transmembrane domain of OmpA, and OmpF, allowed us to obtain the mechanism of OMP entering the Skp cavity, and molecular dynamics simulations yielded detailed molecular interactions responsible for this process. Both experiment and simulation show that the entrance of OMP into Skp is a highly directional process, which is initiated by the interaction between the N-terminus of OMP and the bottom "tentacle" domain of Skp. The opening of the more flexible tentacle of Skp, the non-specific electrostatic interactions between OMP and Skp, and the constant formation and breaking of salt bridges between Skp and its substrate together allow OMP to enter Skp and gradually "climb" into the Skp cavity in the absence of an external energy supply.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Dicroísmo Circular , Modelos Teóricos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...